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Abstract: Multi-resolution object detection faces several drawbacks including its high dimensionality produced by
a richer image representation in different channels or scales. In this paper, we propose a robust and lightweight
multi-resolution method for vehicle detection using local binary patterns (LBP) as channel feature. Algorithm
acceleration is done using LBP histograms instead of multi-scale feature maps and by extrapolating nearby scales
to avoid computing each scale. We produce a feature descriptor capable of reaching a similar precision to other
computationally more complex algorithms but reducing its size from 10 to 800 times. Finally, experiments show
that our method can obtain accurate and considerably faster performance than state-of-the-art methods on vehicles
datasets.
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1 Introduction

Nowadays, it is becoming imperative to furnish a sen-
sorial capacity onto intelligent systems like the ones
human beings possess. Among various sensors, our
most powerful tool to extract information from envi-
ronment is sight. Computer vision is in charge of try-
ing to replicate the different processes performed to
extract and evaluate information. However, process-
ing and classifying images is a really challenging task
due to a wide range of changeability in real-life im-
ages. The most common causes of low homogene-
ity between images can range from defects capturing
images to more complicated problems such as occlu-
sions, non-rigid deformations, viewpoint and lighting
changes[17].
One way to homogenize images is extracting fea-
tures that are not visible to the human eye, these
features are encoded in a manner that provide sin-
gle or multi-scale information about a part of an
image. Among the most used features for differ-
ent purposes of detection, we find Scale Invariant
Features Transform (SIFT)[11], Speeded-Up Robust
Features (SURF)[12], Histograms of Oriented Gradi-
ents (HOG)[13], gradient magnitude and Local Bi-
nary Patterns(LBP)[20]. SIFT and SURF extract in-

formation from Laplacian of Gaussian of an image
but in different ways, HOG uses gradient directions
of smaller patches to describe an image. Finally, LBP
employs fundamental properties of local image tex-
ture.
Texture classification has been a subject of a strong
research in computer vision because it plays an im-
portant role in a wide variety of applications. The de-
velopment of texture descriptors, such as LBP, have
headed in an important direction by using alterna-
tive texture extraction methods with different prob-
lems including image segmentation, object recogni-
tion, image retrieval, aerial surveillance and pedes-
trian detection[8]. Texture is defined as a statistical
measure of the intensity variation over an area, which
quantifies properties such as smoothness and surface
reflectance[9]. Compared to the color of images, tex-
ture requires an extra processing step to obtain a rep-
resentation for each descriptor. Methods for texture
recognition are basically divided in four categories:
structural methods, statistical methods, mathematical
methods and signal processing based methods[9].
An on-road vision-based system is defined by a three
stage pipeline[1]: detection, tracking and behavior.
Vehicle detection is the first approach for higher or-
der tasks and involves different levels of complexity
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due to the scene structure on mobile platforms. Essen-
tially, vehicle detection needs to detect, recognize and
localize a specific object and operate at frame rates
that reaches real time performance in order to pro-
vide a margin time for making critical decisions in
higher tasks. However, vehicles present a high vari-
ability in distinct aspects like: orientation, color, size
and shape. For this reason, it is necessary to find a
robust and uniform way to represent objects in the im-
ages. Typical appearance descriptors for vehicle de-
tection include SURF[3], HOG[4][6][5] and HAAR-
like features[7][2]. In this paper, we propose a multi-
scale approach for vehicle detection using Local Bi-
nary Patterns. First, histograms of LBP are computed
over a single scale per octave and a feature descriptor
is formed by approximating remaining histograms of
features through a power law. PHis-LBP is designed
to be lightweight, robust and ideal for processing plat-
forms with limited resources because only a certain
number of channels have to be computed, improving
processing time and memory space.
Experimental results show that PHis-LBP is smaller
(memory space), faster and has a similar detection
performance than its real counterpart (computing LBP
at each scale) and other feature descriptors. The rest of
this work is organized as follows: Section 2 presents
a review of methods used for computing PHis-LBP.
Formulation and description of the proposed approach
is presented in Section 3. Section 4 describes dataset
employed and evaluation method for PHis-LBP. The
discussion of results and conclusions are made in Sec-
tion 5.

2 Related work
2.1 Local Binary Patterns

This section give us a brief introduction to Local Bi-
nary Patterns (LBP), also we show its advantages and
disadvantages. The general idea behind LBP consists
in translating information in an image by mapping
each pixel and its surroundings, creating micro pat-
terns that contain information about edges and other
local features[16].
The first version of LBP was introduced by[20] and is
defined as follows:

LBP (P,R) =

P−1∑
n=0

s(dc − dn)2n (1)

Where:

s(d) =

{
0 d < 0

1 d ≥ 0
(2)

Figure 1: Local Neighborhoods with distinct parame-
ters P and R.

Every local neighborhood is formed by a gray value of
central pixel dc and dn corresponds to the gray values
of P neighbors located on the perimeter of a circle
with radius R (R > 0) and spaced equidistant from
each other. The position of every single one neighbor
can be determined by equation (3). Neighbors that
do not fit in the center of pixels are estimated using
an interpolation method. Fig. 1 shows different local
neighborhoods varying P and R.

(xd, yd) = (−R sin
2πn

P
,R cos

2πn

P
) (3)

LBP has two important features making it ideal for
object detection, gray-scale (lighting changes) and ro-
tation invariance. The first is accomplished by sub-
tracting gray value of the neighboring pixels to central
pixel and separating them in lighter or darker pixels.
If a lighting change occurs, the difference between
lighter and darker pixels will remain constant relative
to the central pixel since all will suffer same gray level
variation. Every member of neighbor set (d0 to dn) is
thresholded according to equation (1).

Figure 2: LBP encoding process.

LBP produces 2P−1 different patterns, always first el-
ement of neighbors set (d0) is assigned to the right of
central pixel dc and remaining elements are encoded
counter-clockwise as in Fig. 2.
LBP achieves rotation invariance replacing 2P − 1
patterns by a reduced group called uniform patterns.
Classification between uniform and non-uniform pat-
terns is done by defining a uniformity measure U , in-
dicating the number of spatial transitions, i.e. indi-
cates how many bitwise changes (0 to 1 or inversely)
occur in a pattern.
Only patterns with U ≤ 2 are considered as uniform,
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Figure 3: Uniform patterns of LBP (8, R).

typically in LBP (P,R) exists P +1 uniform patterns
and are labelled with the number of ”1” in the pattern,
non-uniform patterns are grouped under a same label:
P +2. LBP (8, R) uniform patterns are shown in Fig.
3, pattern 1 represents a flat area, pattern 9 a bright
spot and other P−1 patterns are used to represent dif-
ferent properties of the image like edges and corners.
Finally, a histogram of P + 2 comprising uniform and
non-uniform patterns, is employed to represent texture
feature of an image.

2.2 Feature pyramids

A set of properties for multi-scale features are defined
in[18], Let Φ be a function that takes an image I and
applies any low-level shift invariant transformation.
Φ outputs a new channel image C = Φ(I) contain-
ing a feature map, each pixel in C is estimated from
a patch of I. Also, the global mean of features com-
puted over I is represented by fΦ(I). A traditional
framework to obtain a feature map of a downsampled
image is given by equation (4). It follows a straight-
forward path, downsample (D) an image by a factor s
and right away computing its feature map Cs.

Cs = Φ(D(I, s)) (4)

Piotr et al.[19] propose a fast method for estimate new
channels Cs from image I of size m x n downsampled
by a factor s using the following approach:

fΦ(Is1)

fΦ(Is2)
= (

s1

s2
)(−λΦ) + ε (5)

If we set s1 = s as our scale of channel to be com-
puted and s2 = 1 as scale of image I, we can infer an
approximation for Cs as follows:

fΦ(Is) ≈ fΦ(I)s(−λΦ) (6)

But, fΦ represents a global mean of features in chan-
nel C :

1

msns

∑
i,j

Cs(i, j) ≈
1

mn

∑
i,j

C(i, j)s(−λΦ) (7)

Cs ≈ D(C, s)s(−λΦ) (8)

Finally, we can obtain an approximation of a down-
sampled channel only by downsampling a higher scale
channel and multiplying it by a scale factor as we can

Figure 4: (a) Channel scaling using channel approxi-
mation, (b) Channel scaling by traditional framework.

observe in Eq.(8). Proposed method by Piotr et al.
and typical framework for channel scaling are shown
in Fig. 4.
Also, Piotr et al. propose a method to obtain a fea-
ture pyramid through channel scaling by modifying
Equation (8), this method produces an approximation
using a higher or lower channel scale for reference as
follows:

Cs ≈ D(CR,
s

sR
)(
s

sR
)(−λΦ) (9)

Where sR ∈ {1, 1/2, 1/4, . . .}, sR represents a com-
puted real channel used to approximate a number of
downscaled channels per octave. Cs chooses the near-
est scale sR to provide an efficient trade-off between
computation speed and accuracy. Feature pyramids
computed by channel scaling are shown in Fig. 5,
this method shows increased speed but lesser accu-
racy than traditional framework. However, achieved
accuracy is enough for object detection.

Figure 5: Feature pyramids approximation.

3 PHis-LBP: Pyramidal Histograms
of Local Binary Patterns

Multi-resolution approaches for object detection are
based on a basic principle, make richer representa-
tions of objects in different channel types and sizes.
However, it implies that computation time and stor-
age will increase according to size of scale represen-
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tation. Piotr et al.[19] found that certain kinds of chan-
nels, especially those related to gradient computation,
preserve its structure through resampled images. We
show below the related concepts behind pyramidal
representation for histograms of LBP.
We start defining LBP as a first-order circular deriva-
tive of an m x n discrete signal, where each pattern
is formed by concatenating the binary gradient direc-
tion of a specific neighboring set. In other words, LBP
delivers a histogram of patterns that measures the dis-
tribution of gradient directions. Gradient magnitude
and direction is defined as follows:

M(i, j)G =
∂I

∂y
(i, j)2 +

∂I

∂x
(i, j)2 (10)

D(i, j)G = arctan(
∂I

∂y
(i, j),

∂I

∂x
(i, j)) (11)

Normally, a gradient histogram of an image is esti-
mated by a pixel-wise voting, where gradient direction
is quantized into q bins and weighted according to an
indicator function Fv and gradient direction D. Each
voting for qth bin of gradient histogram is shown in
equation(12).

hq =
∑
i,j

qD(i, j)GFv (12)

We observe from equation (1) and (12) that a LBP his-
togram can be interpreted as a gradient histogram, ev-
ery pixel contributes with a pattern that is weighted
according to gradient directions of a neighboring
set. Gradient direction DG around a neighborhood is
quantized into P bins and each bin is weighted as in
equation (1). Then, each LBP pattern provides an uni-
tary vote to the LBP histogram H.
We could infer automatically that the structure of up-
sampled and downsampled images I ′ are related to its
original scale image I by a constant factor k. Other-
wise, our interest is to determine how features gen-
erated from images are propagated to upsampled or
downsampled channels. Consequently and using the
definition of derivative, it is demonstrated that ∂I

′

∂x =
1
k
∂I
∂x and ∂I′

∂y = 1
k
∂I
∂y are also related by a sampling

factor. We can extend this approach to 2D discrete
signals and find the same relation for gradient mag-
nitude and direction. Therefore, gradient histograms
hold the same relation between histograms computed
from I ′ and I as is shown in equation (13).

h′q = khq (13)

Re-ordering for LBP histogram, we obtain:

H ′ =
P+2∑
q=1

h′q =
P+2∑
q=1

khq = kH (14)

Previous definition is required to prove that a LBP
histogram is an approximation of the same histogram
but computed in a higher or lower scale. An approx-
imation for any feature channel is done according to
equation (6), where fΦ(I) represents a global mean
of features in an image, and rearranging it in terms
of LBP histogram is shown in equation (15). Image
size is represented by m and n, q refers to each value
assigned to uniform patterns in LBP histogram

fΦ(I) ≈ 1

mn

P+2∑
q=1

qhq (15)

Substituting equation (15) into equation (6), we ob-
tain:

1

m′n′

P+2∑
q=1

qh′q ≈
1

mn

P+2∑
q=1

qhqs
−λΦ (16)

From equation (16), we deduce a similar relationship
as in equation (8):

h′q ≈ D(hq, s)s
−λΦ (17)

H ′ ≈ D(H, s)s−λΦ (18)

According to equation (9), we construct a pyramidal
representation by downsampling histograms of LBP.
Workflow of PHis-LBP is shown in Fig. 6, where LBP
features are computed only in highest and lowest scale
in an octave, then these are used to model other his-
tograms. A downsampled histogram is equivalent to
multiply original histogram by its desired scale s, thus
we avoid downsampling images or channels in order
to save computation time.

Figure 6: Feature creation process of PHis-LBP.
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4 Experimental results

We tested our proposed method using UIUC Image
Database for Car Detection[15] which contains side
view images of cars. Proposed experiments are im-
plemented using MATLAB software on an Intel Core
i5 PC with 8 GB RAM. The evaluation is done us-
ing dataset provided by [15], this dataset provides 700
images of side views of cars and 500 non-car images.
We established our training set as 400 positive images
and 300 negative images. Testing set is defined by 200
images of multi-scale cars and 200 images of non-car
images.
We used an adaptive boosting [14] to train and clas-
sify our vectors generated by different algorithms in-
cluding PHis-LBP and its non-approximated counter-
part (P-LBP). Evaluation was done using Percentage
of Wrong Classifications (PWC) as metric. PWC is
defined as follows:

PWC = 100 ∗ FN + FP

TP + FN + FP + TN
(19)

Where, wrong classifications (False Negatives and
False Positives) are divided by the total population of
classifications (True positives, False Negatives, False
Positives, and True Negatives).

4.1 Neighbors and Radius

In this section, we evaluate different parameters used
in the LBP algorithm and their relation to vehicle de-
tection performance. The first parameter analyzed is
the number of neighbors P used to describe an LBP
pattern. In traditional LBP algorithm, P is proportion-
ally related with performance because we can repre-
sent better an image section with a bigger number of
points in the neighborhood. This behavior is shown in
Fig. 7.
Conversely, as we increase size of neighborhood P ,
performance in P-LBP and PHis-LBP is decreased.
This gradual reduction is due to interpolation of uni-
form patterns, an interpolated uniform pattern value
has more options to choose an approximate value in
a bigger neighborhood set and consequently is placed
erroneously as another pattern. Interpolation effect in
both multi-scale approaches is shown in Fig. 8.
The next parameter involved in LBP is the distance
between central pixel and its neighbors. Liao et
al.[10] discovered that LBP used in face recognition
decreases its performance by increasing radius R, this
relation promotes the creation of non-uniform pat-
terns. In vehicle detection, we observed the same
response as in face recognition. On the other hand,
multi-scale approaches are not affected by changing
the length of radius. Fig 9. shows the performance

of traditional LBP and multi-scale approaches using
different radiuses.

4.2 Accuracy, speed and size

PHis-LBP was compared against two single-scale
methods (LBP and HOG) and multi-scale methods
(pyramids of LBP, gradient magnitude and HOG). In
single-scale methods, an unique descriptor is gener-
ated from applying LBP or HOG algorithms in each
dataset image. Also, we evaluated PHis-LBP against
its real version, i.e., P-LBP computes each histogram
directly from downsampled images. Finally, the pro-
posed method in [19] was used to generate other fea-
ture pyramids using gradient magnitude and HOG as
extracted channels. The first comparison, regarding to
measure performance in object detection, where we
present an average of PWC from all tested algorithms
varying different parameters as neighbor number and
radius length. Object detection performance is shown
in Fig. 10.
Traditional algorithms as LBP and HOG present a
lower performance than PHis-LBP, caused by its non
multi-resolution representation. As we expected,
PHis-LBP performance is not degraded with respect
to fully computed version (P-LBP) because every sin-
gle histogram is estimated accordingly to its nearest
scale. Feature pyramids of gradient magnitude and
HOG were also tested, presenting slightly better per-
formance but increasing the number and complexity
of operations required to compute features.
Concerning processing speed, results are shown in
Fig. 11, all tested algorithms were applied to im-
ages of size 40 x 100. LBP has the highest frame
rate because it only performs simple operations like
thresholding and bitwise rotations. HOG is the most
complex algorithm, since in each window belonging
to the image, histogram voting takes place. Single-
scale HOG reaches to process around 60 frames per
second. Speed performance of PHis-LBP outperforms
about 20% relative to P-LBP, we save operations in
PHis-LBP but it is still necessary to compute interme-
diate scales as reference. Other feature pyramids like
HOG and gradient magnitude are 50% slower than our
proposed method.
The next metric is about the size occupied for stor-
ing computed features, normally an LBP feature has
a size of P + 2 elements, where the most common
values for P are 8, 16 and 24. Consequently, PHis-
LBP is sized according to the number of scales used
to form a pyramid. Feature sizes of other algorithms
are shown in table 1. It should be noted that PHis-
LBP is at least 10 times smaller than other single and
multi-scale algorithms.
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Figure 7: PWC of traditional LBP varying size of neighborhood set.

Figure 8: Performance of multi-scale approaches varying size of neighborhood set.

Figure 9: Performance of traditional and multi-scale LBP in vehicle detection with different radiuses.

5 Conclusions

In this paper a multi-scale method for vehicle detec-
tion that avoids high computational cost using approx-
imations in a certain number of scales has been pro-
posed. The method is based in two main parts, ob-
ject detection is performed using local binary patterns
which deals perfectly with two major drawbacks in
object detection, illumination and rotational changes.
On the other hand, we constructed a histogram pyra-
mid of LBP but a given number of histograms are
computed directly and others approximated in order
to reduce processing time.
We compared several methods against our proposed

method and it performed a similar detection rate than
other robust detection algorithms. PHis-LBP de-
creases percentage of wrong classifications by half
regarding to single-scale version of LBP. Proposed
method is 20% and two times faster than its fully com-
puted version and against other feature pyramids, re-
spectively. Another important aspect of our method
is that its feature pyramids have a good trade-off be-
tween accuracy and memory storage. In some cases,
a PHis-LBP feature is 10 to 800 times smaller than
other object detection features, this aspect becomes
more important when we have limited resources.
We observe that PHis-LBP is a robust and lightweight
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Figure 10: PWC comparison between PHis-LBP and other object detection algorithms

Figure 11: Speed performance of proposed method and other algorithms in vehicle detection.

Table 1: Number of elements per feature in different
vehicle detection algorithms.

Algorithm size
Pyramids-HOG 143382
Pyramids-Grad-Mag 23897
HOG 1584
PHis-LBP-17 170
PHis-LBP-13 130
PHis-LBP-9 90
PHis-LBP-5 50
PHis-LBP-3 30
LBP 10

method, ideally suitable for circumstances where a
real-time processing solution that is constrained by
hardware resources like processor speed, memory or
energy is needed. An example of this are unmanned
aerial vehicles, surveillance tasks require real-time
processing to achieve its goals. However, these kinds
of vehicles have limited resources including energy

and hardware, it is there that our method fits well.
In our ongoing work we are particularly interested to
employing parallelism and FPGA implementation to
speed up computation 10-15 times faster than its cur-
rent speed, which will allow us to process bigger im-
ages in a real-time environment.
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